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Abstract—A previous paper [1] has described measurements of local heat-transfer coefficients over the
surface of a gas turbine blade in a cascade where strong secondary flow was generated. Details of calcula-
tions are now given, the work being considered in two parts: (a) the estimation of secondary flow velocities
and (b) the nature of the blade boundary layer and related heat-transfer properties.

In the first part, calculations for the induced streamwise vorticity are based on the method of Hawthorne
[2). The calculations are made with three assumptions, of various degrees of refinement, about the main
flow. In the simplest case a free vortex flow is assumed, in the next a known two-dimensional velocity field
about the blades is used, and finally, this is corrected to allow for displacement of the main stream. The
results do not differ greatly from each other, and agreement with experiment is generally good.

Boundary-layer calculations make use of the momentum integral relations in the form due to Mager (3]
for three-dimensional flow. Adaptations are made to allow for mainstream vorticity where this is signifi-
cant, and to incorporate a more general skin friction law.

Heat transfer in the laminar layer is calculated by Squire’s method {4] and for the turbulent boundary
layer by using Von Kdrmdan’s extension of Reynolds analogy. The difficulty of predicting conditions
following a laminar separation has made it necessary to base the initial data for a reattaching turbulent
layer on an empirical rule, which is tentatively suggested for wider application, obtained from measured
heat-transfer data.

Comparison with experiment is good where the boundary-layer is laminar, but the heat transfer is over-

estimated in turbulent regions, particularly in the presence of a favourable pressure gradient.

NOMENCLATURE

to total pressure on centre line;

a, n, coefficients in empirical fit to Nu, Nusselt number hc/k; Nu, =
Prandtl-Schlichting friction law ; hd/k, Nu, = hx/k;
c, blade chord; p. P, local static, total pressure;
C, = 0f/0x = l/o curvature of Pr, Prandtl number;
streamline; R, radius measured from axis of
d, diameter of cylinder descriptive rotation of blade;
of the leading edge of the blades; Re, Reynolds number;
f1. = gU/éx streamwise gradient of Re; = U,c/v,Re; = Uy,dfv;
primary velocity ; Rey = U,0,/v,Re, = U, x/b;
F, body force vector, S, distance measured along stream-
g, G, functions defining velocity pro- line;
files in the blade boundary layer ; u, v, w, components of secondary velo-
h, local heat-transfer coefficient ; city in x, y, z directions;
k, thermal conductivity; U, scalar magnitude of V;
H,J, K, L, boundary layer shape factors v, velocity vector;
defined by equations (4.9); X, ¥, 2z, co-ordinate directions referred
m, = P, /P, ratio of total pressure to two-dimensional potential

at chosen point of blade passage
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flow pattern, defined in Fig. 1;
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X,Y,Z, co-ordinate directions used in
development of boundary-layer
equations;

Z, local skin friction parameter de-

fined by Z2 = pu?/t,. ..

Greek symbols
a = tan"! 7, /1, , angle between
surface stress and direction of U
outside boundary layer;

B, angle between stream direction
and (xy) plane;
d, boundary-layer thickness;
o7, thermal boundary-layer thick-
ness;
o%, o2, displacement thickness of boun-
dary layer defined in equations
(4.5);
€ = tan «;
0, angular deflection of streamline
in (xy) plane;
0,.06.,0,, momentum thicknesses of boun-
dary-layer defined in equations
4.5);
0, = 0, Rey;
0, 0,, first and second approximations
to 0;
2 du
A, = — —— velocity gradient
v dx
parameter ;
U v, p, dynamic, kinematic viscosity,
density of fluid;
&, L, components of Q in x, y, z direc-
tions;
o, radius of curvature of streamline ;
T, shear stress;
Typ Taps shear stressin (xy)and(zy)planes ;
To. o surface shear stress in direction
of x;
To. 4 surface shear stress in direction
ofz;
¢, angle between normals to stream-
line and Bernoulli surface;
¥, secondary stream function;
Q, vorticity vector;
w, scalar magnitude of blade

angular velocity about a fixed
axis;

w,, w,, w,, components of blade angular
velocity in X, y, z directions.

Suffixes

1, upstream condition ;

1z, upstream condition at distance z
from midspan;

2, downstream condition;

2c, downstream condition at mid-
span;

X, condition at distance x measured
along streamline;

Xz, condition at point in blade pas-

sage at distance z from midspan.

1. THE SECONDARY STREAM

THE SECONDARY stream is calculated by use of
Hawthorne’s theory [2] which is indicated
briefly below. It has been used by Hawthorne
and Armstrong [ 5] to predict with fair accuracy
the secondary flow at outlet from a cascade of
impulse turbine blades ; moreover, other theories
of Squire and Winter [6] and Preston [7] are
seen to be special cases of the theory.

The equations refer to inviscid incompressible
flow. The vorticity present upstream of the
deflecting cascade may have arisen from fric-
tional effects, but in the deflecting mainstream
with which we are concerned, viscous effects
are not influential in forming the secondary
flow.

With V as a stream velocity vector of scalar
magnitude U, the vorticity @ = curl ¥ may be
split into two components

<Q‘V ) V= (é) V directed along the

vV.v .
streamline
and
VAQATY
%—— normal to the streamline.

The following relations are used:

divQ = 0,since @ = curl V

div ¥V = 0 by continuity.
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The analysis considers the estimation of the
streamwise component of vorticity. The fore-
going relations may be used to show that

- ¢ divV AVAQ)
V . grad (ﬁ) = 72

(1.1)

of which the right-hand side is expanded using
the Euler equation

(V.grad) V = — grad (%) + F

where F represents body forces. The resulting
expression derived in [2] is

V . grad <%) = - Elz {[2!7 A grad (%)]
(V . grad) r/} - —l;—z(F.ﬁ)

— div ___(Vé\2F). (1.2)

The first term on the right-hand side is shown
to arise as the forward inclination in the stream
direction of an upstream vortex line in transit
through the passageway. The second term, which
becomes effective downstream, represents the
wake-directed component arising from stretch-
ing of a portion of the filament that commences
upstream and wraps round the blade in passage.
The third is the vorticity shed from the blade
due to change of circulation along its length in
non-uniform flow.

Within the blade space, only the first right-
hand term of equation (1.2) is retained. Examin-
ing this term, the argument of Hawthorne [8]
shows that only the centripetal component U?/o
(in which ¢ is the radius of curvature of the
streamline) of acceleration (V .grad) ¥ con-
tributes to the result of the scalar product. In
general, the Bernoulli surfaces are curved as
well as the streamlines, and the normal to the
Bernoulli surface at any point is not perpen-
dicular to the principal normal to the stream-

501

line. Writing ¢ as the angle between these
normals, equation (1.2) becomes

- Uz .
V . grad (%) = —2% {grad (I—;)} 7sm ¢.

Integrating this expression between stations
1 and 2 of a streamline along which the length
is denoted by S, leads to the result

9.6,
o)

1

in 9
S Y gs.

In the present case, Bernoulli surfaces are
assumed to be plane and paraliel to the end wall
so that ¢ = n/2. Replacing dS/o in this by the
streamline deflection df and performing the
integration from the upstream direction where
5 = 0;

1
(/)= -2 f i grad (P/p)df. (1.3)

1

If U is constant along any given streamline
(as in free vortex flow) and if grad (P/p) is
assumed to be constant along the streamline,
ie.

grad (P/p) = grad (p,/p + U1/2) = U,(dU,/dz)
then equation (1.3) becomes

&= —2(dU,/dz) 6 (1.4)
which is the result of Squire and Winter [6].

2. EVALUATION OF THE
STREAMWISE-DIRECTED VORTICITY
Figure 1 indicates the position of (yz) planes,
a', etc., in which the vorticity component ¢ and
the resulting induced velocities v, w are to be
computed. The planes do not quite coincide
with the slightly curved equipotential planes of
two-dimensional motion, but no significant
error is introduced by this discrepancy. & is
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computed from the integral of equation (1.3)
in the form

(o). -

where the suffix xz is introduced to identify a
chosen point in the blade passage at a specified
spanwise station z. The terms U, P,, and 0 of
the integrand define the “primary field”" in
the sense used in [1], and, irrespective of the
degree of sophistication adopted in describing
this field, it should be noted that perturbations
introduced by the secondary velocities are
neglected when evaluating the integral. The
main features of the primary field are recalled
at the end of this section.

Equation (2.1} is conveniently written for the
purpose of calculation as

[ 1
- jUz’ grad (P,,/p)/d6 (2.1)

1

2 sz P2L‘ xam Ulz 2
Un. (u) , f % (u“) @ @2
1

in which P, is a convenient reference pressure
(the total pressure downstream at the centre
span), U, is the upstream velocity in the (xy)
plane under consideration, and m is P, /P,..
The integral may be evaluated along the stream-
lines of Fig. 1 for a specified distribution of up-
stream total pressure, on the assumptions that
dm/0z remains constant, and U,,/U,, retains
the value it has in two-dimensional flow, as the
integration proceeds. Alternatively, the mea-
sured field within the blade passages may be
used to derive appropriate values for the total
pressure gradient and velocity along the length
of the streamline to perform a more realistic
calculation, so obtaining a comparison of com-
putations of two different degrees of refine-
ment. The details are given in Appendix 1; it
suffices to note here that in the region where the
upstream total pressure is uniform a different
expression is used from that appropriate to the
region where there are severe gradients of total
pressure.

Cx: =
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The calculation of vorticity according to
equation (1.4) due to Squire and Winter [6]
follows immediately from

&= —2(dU,/dz) 0
= —20d[2(P,. — p,)/p]/dz

in which 6 is angular deflection as read from the
two-dimensional flow pattern of Fig. 1 and P,,

(2.3)

A._@)
—®

e

L
.
—

4

Fi1G. 1. Two-dimensional potential flow solution and planes
used for measurement and for calculation of secondary
velocities.

is assumed coustant along a streamline, being
specified in terms of z upstream of the cascade.

Note on the primary velocity field

Certain main features of the primary velocity
field referred to above have been described in
reference [1], where it was seen that results of
the potential solution disagreed slightly with
measured pressure data at the blade surfaces
even over the portion of the blade span where
total pressure is uniform, and that there was a
smal} decrease in static pressure drop across the
cascade as compared with the two-dimensional
value, due to the reduction in stream exit angle
caused by secondary velocities. This particular
influence outweighed a reverse effect due to a
net contraction of the width of the stream over
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which the total pressure is uniform, which tends
to promote an increased pressure drop across
the cascade. In passing through the blading,
the mainstream is deflected laterally with the
changing velocity profile. An accurate predic-
tion of this, as a basis for evaluating the terms of
the integrand of the equation for streamwise
component of vorticity would be complex but
might be made in terms of the actuator disc
theory as developed by Hawthorne and Arm-
strong [9], where the equations of continuity
and motion are linearized on replacing the
cascade by a disc at which deflection occurs.
Application of the equations is limited to fields
of moderate upstream non-uniformity, so it is
not surprising that when a prediction was made
in this way for the total pressure profile at the
plane of trailing edges, the result did not tally
with experiment in respect of the dimensions of
the uniform region.

Rather than attempting to extend the method
of Hawthorne and Armstrong [9], recourse was
made to experimental data to obtain a more
refined primary field. Whilst such information
may not in general be available for cascades of
blades, it is useful to determine to what extent
the computed secondary velocities are affected
by the assumptions made concerning the pri-
mary field. In fact it will be seen that secondary
velocities based on the relatively simple poten-
tial field, which makes no appeal to experi-
mental measurements within the blade passage,
and corrected simply in terms of an upstream
velocity profile, compare favourably with those
based on the lengthier method. Even assuming
a free vortex field, which leads to Squire and
Winter’s result of equation (2.3), gives results
of fair accuracy.

3. SOLUTION FOR THE INDUCED
VELOCITIES v AND W
The vorticity component £ has the direction
of the unperturbed streamline, so that induced
velocities lie in the equipotential surfaces which
are normal to the streamlines. These surfaces
are very nearly plane so the plane surfaces

indicated by &', etc., in Fig. 1 may be regarded
as equipotentials for present purposes, and the
components v and w may be evaluated as if
directions y and z lay in these plane surfaces.
The local vorticity and continuity relations are

_ ow v

= — 3.1
4 o (3.1)

) dy ow
— 4+ — = 3.2
ax(UCOSﬁ+u)+6y+0z 0 (3.2

where u, v, and w are perturbation components,
U is the mainstream primary velocity and f is
the angle between the mainstream direction and
the (xy) plane. The perturbation value u is taken
as being small compared with v and w since it
arises only from reorientation of the incident
vorticity #,, out of the (xy) plane, giving a
component {, under the action of the secondary
components v and w, and is therefore of a
smaller order of magnitude.

The distribution of § over the blade is as yet
unknown, so the assumption is made that cos
B = 1. Values of w resulting from a calculation
using this assumption could, if required, be used
to obtain a better approximation to cos p.
The results of Figs. 6 and 7, for the particular
calculation reported here, show that the assump-
tion is reasonably valid up to x/c ~ 09 on the
convex surface and up to x/c ~ 0-6 on the con-
cave. Writing the known variation of 0U/dx
in the (yz) plane as fi(y.z), and taking cos
B = 1, equation (3.2) becomes

fiy. 2) + dv/dy + dwjéz = 0.  (3.3)

Appropriate differentiation of equations (3.1)
and (3.3) gives

v % of, o¢
VT Ty a G4
Pw  *w of, o0&
Ey—z 2 s + 5—)-] (3.5

The right-hand terms of equations (3.4) and
(3.5) are not easily described by analytical
functions nor are the values of v and w initially
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known round the entire boundary of the cross-
section of the flow passage.

An initial approximation, however, may be
made taking the assumption f; = 0. This allows
the definition of a secondary stream function
according to

_ oY oy

= = - 36
b= w 3 (3.6)

which satisfies the reduced equation

v Ow
a—y + 'a; = 0. (3.2a)
Rewriting the relation (3.1) gives
Yy Py
W + Ef = - ¢ (3.7

where = 0 round the entire boundary of the
flow passage, and along the plane of symmetry
z=0.

A relaxation solution for  is found for each of
the planes a’' to ¢’ of Fig. 1, the distribution of ¢
over each of the planes being determined by
one of the methods described in Section 2. A
similar procedure may now be followed for
evaluation of 6U/0x where U originates in the
potential solution, and is taken to vary in the
direction of z in direct proportion to the up-
stream velocity. Boundary values are then given
to equations (3.4), (3.5) which, by the relaxation
method, yield an improved solution for v and w.

It will be seen that with the assumption dU/
0x = 0 (which is true only for flow approaching
and receding from the cascade). equations
(3.4) and (3.5) become

ot % o¢

vy av. % 4
oy? t oz 0z (3.42)
*w 0w ¢

oW o _ % 35
oyt = 0z° + dy (3.52)

Results computed for v and w on these rela-
tions must be identical with those derived from
the stream function via equations (3.6) and
(3.7), apart perhaps from some loss of accuracy
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in the use of the differentiated right hand quan-
tities in the above pair of equations. The order
of differences to be expected between the solu-
tion based on equations (3.4) and (3.5) and the
first approximation based on equation (3.7)
will be indicated by the respective magnitudes
of —0f,/0y compared with —d&/0z in equation
(3.4) and —0f,/0z compared with +0d&/0y in
equation (3.5).

Figures 2 and 3 show the results of calcu-
lations in which the streamwise component of
vorticity £ has been calculated by the three
different methods referred to above, and the
resulting induced velocities by equation (3.7).
Correspondence with experiment is generally
quite good, but it cannot be argued that in-
creasingly good agreement results from in-
creasingly complicated calculation.

Plane e was selected to illustrate the secon-
dary velocity distributions, partly to amplify
the data given in reference [1] where similar
results were given for plane ¢, and partly
because secondary velocities generally have
their largest values at plane e.

The effect of including the f; term is illus-
trated on Figs. 4 and 5, where a comparison is
made, using the same distribution of £ in both
cases, between the secondary velocities com-
puted by equation (3.7) and by solution of
equations (3.4) and (3.5). The w component is
altered very little by inclusion of f;, but v is
affected to a noticeable amount and generally
agrees rather better with measurements than the
previous solution. It should be noted that
calculations done in plane ¢’ have been corrected
to plane e, by increasing v and w in proportion
to the increase of the deflection angle in two-
dimensional flow from plane ¢’ to plane e.

4., THE THREE-DIMENSIONAL BOUNDARY
LAYER AND HEAT-TRANSFER PREDICTIONS
The mechanism which produces secondary

flow in the turning mainstream is also present
in the blade boundary layer, where severe total
pressure gradients are present, and where more
pronounced spanwise deflections are to be
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expected near to the surface. It is therefore con-
venient to divide the velocity in the boundary
layer into two components at right angles, the
axes being chosen either with reference to the
(xy) plane of Fig. 1 or with reference to the
velocity vector just outside the boundary layer.

The problem has been treated by Wild [10],
Timman [11], Mager [3] and others. Timman
provides the most general method, allowing the
main and cross flow components to vary ar-
bitrarily in relation to a curved surface. How-
ever, with the one restriction that the cross flow
varies with respect to.the streamwise coordinate
only, the method due to Mager [3] appears to be
applicable to this problem and was adopted with
some modification.

Mager shows that the boundary-layer equa-
tions referred to the orthogonal curvilinear
co-ordinate system (X, y, z), rotating with uni-
form angular velocity w, and in which x is the
stream direction just outside the boundary
layer and y is normal to the surface, may be
written as

ua_“+v%+w%+Cuw——la—p
ox oy oz - pdx
1 or,, 2p OR
7 xy R— — 2w, 4.1
ua_w+vaw+ gv_v_ ’C = Lo
o0x ay waz paz
1 , JR
+_éfﬂ+w2R—+2wvu. (42)
p oy oz '

In these equations, (4. v, w) are velocity com-
ponents within the boundary layer and C is the
curvature of the x-axis. For a laminar boundary
layer, dt,,/0y may be replaced by u(6*u/dy*)
and dt,,/0y by p(0*w/0y?). Adapting Mager’s
treatment to the present case where there is a
component  of vorticity in the y direction just
outside the boundary layer and where w is
zero, the momentum equations may be shown
to be

06, 10U 0., 2

b 2N * Pz A
0x+U6x(29"+6")+ 0z -'_Ue"z

2K
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- ;2}; (4.3)
N R WLy
+ 2% 6t 0+ L0, + )
- _ ;(Z,z (4.4)

where U is the value of u at the edge of the
boundary layer, 7, , and 1, , are surface shear
stress components in the x- and z-directions,
and displacement and momentum thicknesses
are defined as follows:

6, = 1/U* [(U — wudy
0. = L/U? [(U — uw dy

6. = 1/U* [w?dy (4.5)
5% = LU {(U - wdy
6 = 1/U [wdy.

To obtain a solution of the momentum equa-
tions it is necessary to assume expressions for
u and w; Mager followed Prandtl’s suggestion

[12]
} (4.6)

in which G and ¢ are functions undefined at
present, satisfying the following boundary con-
ditions,

uw/U =
w/U

Gly/9)
eG(y/9) g(y/0)

when y =0: G =0, g=1
y=24: G =1, g=20 “7
and in which ¢ is
e=tana = Ty /Ty (4.8)

o being the angle between the surface stress and
the direction of U.
It is convenient to introduce constants
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defined by Mager in terms of the functions
G and g as follows

H = {(1 — G)dy/f(1 — G)G dy

J = {(1 - G)Gg dy/{(1 — GG dy

K = [Gg dy/[(1 — GG dy

L = [G*¢* dy/|(1 — GG dy

so that the various boundary-layer thicknesses
may be written in terms of 8, as

o = HE,, 0,. = ¢eJ8,, oF = eK#,,
. = €*L6,. (4.10)
For calculation of the laminar boundary
layer of the turbine blade profile, the function

G(y/d) is assumed to be of the Pohlhausen
quartic form

Gy/d) = (2 + A/6)(y/d) — (A/2)(y/d)*

+ (=2 + A/2(y/8) + (1 — A/6)(y/6)* (4.11)
in which
A= 6—:2—: (4.12)
The function g(y/é) is taken as
gly/®) = (1 — y/o) (4.13)

which is the form successfully used by Mager for
turbulent layers when computing results for
comparison with experimental data of Grusch-
witz [13]. Its use for laminar layers has been
proposed by Prandtl [12] for a yawed cylinder.
The Pohlhausen profile is known to give good
accuracy for laminar boundary layers which
are not close to separation, and reasonable
confidence is put in equation (4.11) provided
that the velocity gradient parameter A can be
suitable chosen. After some analysis of the
results of Squire [4], a value of 4 = 30 was
assumed for the laminar boundary layer on both
of the blade surfaces. The corresponding con-
stants required for subsequent calculations are

H = 2430,J = 0492, K = 1-365and L = 0-2445.

However. for evaluation of the momentum
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thickness 6, equation (4.17) below, due to Squire,
was adopted.

The turbulent layer solution requires assump-
tions regarding surface shear stress as well as
velocity profiles. Following Mager, we adopt

G=(yor, g=(01-yo* 414
which leads to
H = 12857, = 05423, K = 2:6727,
L = 1-0285.

However, the friction law which he used is
replaced by a somewhat more general form

To.»/PU% = o(Reg) ™" (4.15)

Values of ¢ and n are chosen so that the resulting
value of 7, ,, computed at a value of Re, corres-
ponding to the start of the turbulent layer and
at ten times this value, agree with the Prandtl-
Schlichting values at the same pair of values of
Re,. The integration of equations (4.3) and (4.4)
is then possible as indicated in Appendix 2.
For the purpose of subsequent heat-transfer
calculations, the required momentum thickness
is 0,, and this is conveniently rewritten at this
stage as

0 = 0, Rej. (4.16)
Appendix 2 gives details of the method by which
the momentum integral equations may be sol-
ved. Successive approximations for 6, designated
by 0, and 6, are obtained for the momentum
thickness under two- and three-dimensional
conditions respectively.

Heat-transfer calculation

As a preliminary to calculating heat-transfer
coefficients the momentum thickness is deter-
mined over the surface under conditions of cross-
flow by the methods referred to above.

For the laminar layer, the appropriate values
of a and n are 0-235 and 1-0 respectively, corres-
ponding to the adoption of Pohlhausen’s velo-
city profile. However, the form used by Squire
[4] is known to be reliable for laminar boundary-
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layer calculation, so the value of 8, is taken to be
given by

X
g2 = Y4Ly J US dx. @.17)

U6

The numerical values of the shape factors H,

the influence of nose vortices mentioned in the
discussion of experiments in the first paper,
although this may significantly increase the
local heat-transfer rate.

For the turbulent boundary layer Von Kar-
man’s extension of the Reynolds Analogy is
quoted (Eckert [14]):

Nu, 1 1 }
Re, Pr Z2 |1 + (1/Z)[5(Pr — 1) +5 log, (5Pr + 1)/6]

4.22)

J, K and L are taken to be constant throughout,
since they do not vary greatly.

The well-known result of Squire’s calculation
is

in which
Z? = pUl/tg 4. (4.23)

This is related conveniently to the ordinates

= 05715 k/6, (4.18) Nu/Rej by:
& Rei Ux/UZc 4 24)
Re} ~ (Z%/Pn{1 + (1/Z)[5(Pr — 1) + 5 log, (5Pr + 1)j6]} @

where 0y is the thermal boundary-layer thickness
which may be obtained iteratively from the
physical thickness using tabulated functions
and the known variation of U in the stream.
For the purpose of comparison with experiment,
it is convenient to express this in the form

Nu 05715
Re} ~ (81/c) Re}

in which Nu is the Nusselt number based on
blade chord ¢ and Re, is Reynolds number refer-
red to downstream conditions at midspan of the
blades. For the stagnation point, the empirical
relation given by Squire, which closely fits his
exact solution, is used:

Nu,

- 0-4
Re} = 114 Pr

(4.20)

in which d is the cylinder diameter descriptive
of the leading edge. Expressed in the same form
as equation (4.19)

Nu
R et
No attempt has been made so far to allow for

= 114(cU,,/dU,)* Pro*  (4.21)

(4.19)

Initial thickness of the turbulent boundary layer

The calculation of the turbulent boundary
layer requires knowledge of the initial turbulent
momentum thickness after a laminar separa-
tion. An empirical rule is used, involving one
constant, which is supported by experimental
evidence.

Assuming that the volume of fluid at separa-
tion remains constant throughout separation
in view of the negligible influence of skin fric-
tion, then

Ud j (w/U) d(y/d) = constant  (4.25)
[+]

If we knew velocity profiles in the form
u/U = f(y/9)

for the laminar layer just before separation and
for the turbulent layer just after reattachment,
the ratio of the two values of § could be computed
from equation (4.25). In the absence of the re-
quisite data, a rough calculation is made using
approximate velocity profiles for the simple
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case of a flat plate in zero pressure gradient,
namely

wU = 3y/d) — Hy/d)°
for the laminar layer and
u/U = (y/o)

for the turbulent layer. This gives the initial
value of the Reynolds number for the turbulent
layer, based on momentum thickness as

(UO,/v)r = 0-523 (0,/c), (U/Uy)

x (Up/U,) Re, (4.26)

where L refers to conditions at the end of the
laminar layer and T to the initial condition of
the turbulent layer, U is the local velocity, and
U,. downstream velocity at midspan. A check
of the constant in equation (4.26) is given by
basing the left-hand term on values devised from
known measurements of Nu/Re}. This involves
working in reverse order the steps relating
0, to Nu/Re} of the preceding section. Using
data for the laminar separation point at x/c ~
0-7 on the convex surface, the mean value of the
constant for six streamlines taken over the
complete span was found to be 0-466. This value
was used in lieu of 0-523 in equation (4.26).

The position of laminar separation is deter-
mined by experiment (see [1]) and the positions
consequently assumed for calculations are indi-
cated in Figs. 6 and 7.

Further research would be necessary before
any confident theoretical prediction of the
transition points could be made where the
influence of cross-flows is involved. Close to the
end wall, there is strong interaction between
boundary layer on the convex surface and the
layer of the end wall of the cascade, leading to
early transition.

Comparison of measured and computed heat-
transfer results

To facilitate comparison with experimental

data, which were obtained in planes of (x, y), it

is necessary to interpolate the results of calcula-

tions (made in natural streamline co-ordinates)

to these planes. Figures 6 and 7, which show
experimentally determined streamline trajec-
tories close to the boundary layers of the blade
surfaces, show how interpolation may suitably
be effected.

If experimental data were not available, an
estimate could be made from computed values
of w, provided that the transition line could be
determined or assumed with confidence.

Comparisons are shown in Figs. 8-11, for
the condition of zero blade incidence and
Re, = 338 x 10°.

Laminar flow regions

Convex surface. There is generally good
agreement between calculations and experi-
mental results at the stagnation point and over
the fore part of the blade up to x/c ~ 075, the
results based on the first approximation 6,
lying generally somewhat closer to the measured
values than those based on 6. Over the majority
of the span, the second approximation leads to
higher values of calculated heat transfer than
does the first, but this situation is reversed
at the station z = 4'5 in near to the end of the
blade.

Concave surface. In the two-dimensional
mainstream zone near the midspan, conditions
are predicted well up to x/c = 04, where a
surface roughness destabilizes the boundary
layer, as discussed in reference [1]. The calcu-
lated laminar curve falls smoothly to a value of
0-32 at the trailing edge. In the region where the
upstream total pressure varies, transition occurs
very much earlier, namely at x/c = 0:1. but
over the short length where comparison is
possible laminar heat transfer again agrees well
with measurement.

Turbulent flow regions

Convex surface. The momentum thickness is
chosen to be consistent with measured heat-
transfer data at reattachment in the pressure
rise downstream of the throat (x/c ~ 09)
according to the empirical rule of equation
(4.26), using a constant of 0-466. The second
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x/c

T\
08— -+ 2
Start of
turbulent
layer
06

; |

-5 2:0 25 30 35 4-0 45
Z, in

F1G. 6. Streamline configuration close to the boundary layer
on convex surface.

[ N R R

fem=rn 2
AN v
|

0-2

2:0 25 30 35 40 45 50
Z in
F1G. 7. Streamline configuration close to the boundary layer
on concave surface.

approximation @y for momentum thickness
now leads to closer agreement with experiment.
At span station z = 45 in, where there is inter-
ference between the wall and blade boundary
layers, transition is assumed at x/c = 0-35,
turbulent separation is taken at x/c = 08,
and this is followed at x/c = 0-85 by turbulent
reattachment.
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atz = 2-51in.

2-2 ' l
—o— Measured

-8 2 —o— Based on §;
—o— Based on8
2= 35in

i J
023 08 04 0 04 08 12
Convex x/c Concave

F1G. 10. Computed and measured heat-transfer coefficients
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FiG. 11. Computed and measured heat-transfer coefficients
atz = 4:5in.

Concave surface. The rising curve downstream
of the point x/¢c = 04 in the region of uniform
mainstream is not anticipated by the calcula-
tions. However, two calculated curves are shown.
The lower one is computed using an initial
boundary-layer thickness at x/c = 0-4 chosen
to fit the measured heat transfer at that point.
The upper curve is for a turbulent layer which is
assumed to originate at the stagnation point.
The experimental results are seen to lie on a
line which passes from the lower to the upper
calculated curve between x/c = 04 and the
trailing edge of the blade. In view of the reason-
able success with calculations elsewhere on the
blade, it seems that this layer is intermittently
turbulent or in a state of progressive break-
down, as described previously [1].

In the region of varying total pressure, the
experimental values show slowly rising curves
exhibiting a more erratic behaviour than else-
where on the surface, and which lie almost
entirely below the calculated values. The skin
friction according to the second approxima-
tion is generally a little greater than the first.

It will be seen that over most of the blade
there is quite good agreement between com-
puted and measured values. The influence of
cross-flow on local heat transfer over the
laminar flow part of the convex surface is not
large, and the calculations follow this particular
experimental trend extremely well. It is con-
cluded that the methods described may be
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used with reasonable confidence if information
on the position of the transition lines is avail-
able. Although, in the investigation of the
relative accuracy of methods of various degrees
of refinement, appeal has been made to experi-
mental data in the preceding sections, it should
be emphasised that in no case has the result of
computation been significantly improved by
incorporation of such data.
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APPENDIX 1
Note on Estimation of Primary Field

The simplest model of the primary field is
obtained by taking the two-dimensional po-
tential solution of Fig. 1 and scaling all velocities
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in a given (xy) plane in proportion to the known
velocity at inlet. The local velocity U, at any
chosen point in the blade passage at a specified
spanwise station z is thus given in terms of the
upstream velocity U,, by

Uy/Uy, = UyUy, (ALD)

where the suffix p indicates the two-dimensional
potential solution. Use of this simple relation
leads to an overestimation of the pressure drop
through the cascade, although the secondary
stream deduced from it is in fair agreement with
experiment.

A more realistic model is one which takes
account of lateral deflection, which may be
estimated from measurements within the blade
passages as indicated below. It is convenient to
deal with the region over which the inlet
velocity profile is nearly uniform (i.e. z < 2 in)
separately from that where the total pressure is
varying rapidly (ie. 5in > z > 2 in).

Over the region of near-uniformity, an adap-
tation is made of the method evolved by Stuart
[15] for dealing with an apparent flow con-
traction in a compressor cascade. The reduction
of pressure ratio across the cascade, as com-
pared with the two-dimensional case, leads to a
spanwise diffusion of the stream. Suppose that
the upstream velocity U,, in the flow under
consideration is related to the upstream velo-
city U,, in a corresponding two-dimensional
flow by

Ulz/Ulp = i (Al.z)

in which 4 > 1; the velocities U,, and U,,
downstream of the blades are equal in the two
motions. We now assume that there is a relation-
ship at the form

U .+
pr_l—(l—/l))(s

between the velocity U,, at any point of the
flow and the velocity U,, at the same point of
the two-dimensional flow. The parameter y
varies from zero to unity through the blade
passage, and s is a constant. The procedure used

(AL3)
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to determine y may be seen by reference to
Fig. 1 where the line LL denotes the plane of the
leading edges, and SS' a plane at which two-
dimensional flow is substantially uniform down-
stream of the blades. For each streamline of the
two-dimensional flow, y is the distance from the
intersection of the streamline with LL, projected
in the direction of the chord, and expressed as a
fraction of the projected length of the segment
of the streamline contained between LL and S§'.
The change in velocity ratio due to diffusion
may then conveniently be expressed in the form
sz pr/ Ul P

U, 1-(1-ny

from which 2 may be found by putting y = 1
and comparing the overall velocity ratio as
measured in the two-dimensional flow condi-
tion with that measured in the presence of
secondary flow. The exponent s is chosen to suit
measured values of surface pressures along the
blade chord. Writing

(A14)

CP = 1 - (sz/U2:)2 (AlS)
as the pressure coefficient and
C, =1—(U/U,,» (A1.6)

as the pressure coefficient for two-dimensional
flow, and substituting in equation (A1.4) leads
to the result

1-C\ .
(1 - Ci) = {1 —(1 = ArYr (ALT)

which may be rewritten to give s explicitly as

s =log {1 — A[(1 — CH/(1 — CY¥/
1 — M}logx (ALS8)

Experimental values of C, show that s is very
nearly constant over the blade chord, indicating
that the form of equation (A1.2) gives a good
representation of the effect being considered.
In the particular condition of the present test,
4 has the value 1-24 and s is 2-7.

Over the part of the span where the total
pressure is changing rapidly (5 in > z > 2 in)
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the above treatment requires modification to
allow for changing total pressure. Using equa-
tion (A1.7) as a basis, various forms of relation-
ship were considered to obtain an empirical
matching of measured pressures calculated
under two-dimensional conditions. The form
adopted is

(1 = CHAL — C))

=1+ x+ 9 -y (ALY

in which p, g and r are constant along a blade
surface at a given value of z. For flow within the
blade passage, linear interpolation between the
values of the constant on the concave and convex
blade surfaces is adopted, values being chosen
appropriate to the particular value of z. Typical

values of the constants p, g and r for the parti-
cular non-uniform flow under consideration
are {(at z = 3-5 in.) 1-00, 0-40 and 0-37 on the
concave surface and 1-60, 0-20 and 1-34 on the
convex surface.

The relationship which corresponds with
equation (A1.4) may readily be shown to be

sz _ pr mPZc — P2
Ui, Uzp mP,. — p;

1-Cc)\?
X (1 — C;,)} (A1.10)

where, on the blade surface, mP,, is the local
total pressure involved in the calculation of
C,, and in the blade passage, mP,, is again the
local total pressure at the point where U, is
required.

APPENDIX 2

Outline of Boundary-layer Calculation

Following the analysis of Mager [3] and making slight adjustments to allow for the facts that the
blades are not rotating and that the main stream is not irrotational, having a component # of vorticity
just outside the boundary layer in the y direction, the momentum integral equations are

60x 10U N 90, 2n _ Tox

x + — U ox 26, + 6% + % + T 0, = U2 4.3)
00, ad ., 1 6U . 20U n T,
" + &(52 0., + (9 — 0% + U ox (0¥ —0,,) + T @0, + 0,) = o 4.4)

Substitution of H, J, K, L from equations (4.9) and 1, ,/pU? from equation (4.15) and for 1, ./t »

from equation (4.8) gives, after reduction,

n
E2+ - n+l]

n n+2Je
a1 T

a—8+0{"+ nt 2y 52U
0z

U 0z

r]} —a=0 (A21)

2 2
el g+ PP e —m i =0 a22)
n+1 Uln+ 1

1 00 1 o6 de oU
nrix Tnrila T at O{Ua
(K—-J) 80 Le 00 de

b — + 2L8
n+186x+n+16 + (K- J)06x+ ¢
in which

0 = 6, Re)

(4.16)

and the constants a and n are available from the initial condition. Making the same assumptions as
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Mager, that ¢ is small compared with unity, and @ is small compared with length measured along the
flow path, then terms in 2, ¢f and 6* may be neglected and equations (A2.1) and (A2.2) simplify to

00 19U

0=n+ la (A2.3)
ox

0O 1 160 n+210U a H
|l rr 210y - 1+ HC—ni| (A24
6x+[n+106x+n+1U6x+0(K—J)J8 J—K[(+ ) "U] (A24)

The solutions, extended to a desired value x from an initial value x,, of these equations, are obtained
as follows

(n+ la

0[ = oi(lji/U)(”+ DE*2=n + U(n+ NH+2)-n

U(n+ D(H+2)—-n dX (A25)
where 6, is the first approximation. Using this to obtain a first approximation & of equation (A2.4)

X

[ af}ln+ ) Y2+ B (x) dx

n n n & Xi
& = (0,/6)""F V) (U U+ DIt H)EI(X) + U ZK) 01D geF e E ) (A2.6)

in which

E (x) = exp (KL—J f d—:) (A2.7)

Xi

and
o=(H+1)C ~ Hy/U. (A2.8)

The terms involving ¢ in equation (A2.1) may now be taken into account. The reduced form,
equation (A2.3) becomes:

00 00 10U
admitting a small loss of accuracy in the neglect of the term J@ de/dz. Mager suggests the use of
Lagrange’s method to obtain the improved value, say 6y, from this equation. However, if 86,/0z
and 08,,/0z are taken to be equal, the solution is:

[m+DH+2) —n] +nedC+ (n+ 2)%11} =(n+ la (A29)

o [ U v@+ -1 £ 0 1 1a — Js 66,02} dx

0y = (U U+ DiE+2)=n E. + go DD ) (A2.10)
in which a and n are known, and E,(x) is
E,(x) = exp { [ Je[nC + (n + 2)m/U] dx}. (A2.11)

X;
Clearly the accuracy of the calculation, which starts from a two-dimensional approximation and

proceeds to correct this for cross-flow effects, depends on the accuracy with which the two-dimen-
sional value of momentum thickness is first predicted.
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Résumé—Dans un article précédent [1], Pon a décrit des mesures de coefficients locaux de transport de chaleur sur la surface
d’une ailette de turbine & gaz dans une grille d’aubes ot se produit un écoulement secondaire important. On donne maintenant
les détails des calculs, en les considérant en deux parties, (a) I’estimation des vitesses d’écoulement secondaire et (b) la nature
de la couche limite sur l'ailette et les propriétés du transport de chaleur qui y sont liées.

Dans la premiére partie, les calculs pour la vorticité longitudinale induite sont basés sur la méthode de Hawthorne [2].
Les calculs sont effectués grice a trois hypothéses sur I’écoulement principal, avec plusieurs degrés de complexité. Dans le
cas le plus simple, on suppose que ’on a un écoulement de tourbillon libre, dans le cas suivant, on utilise un champ connu
de vitesses bidimensionnelles autour des ailettes, et enfin, on le corrige pour tenir compte du déplacement de I’écoulement
principal.

Les résultats ne différent pas beaucoup I'un de I'autre, et I'accord avec ’expérience est généralement bon. Les calculs de
couche limite emploient les relations intégrales de quantité de mouvement sous la forme due & Mager [3] pour ’écoulement
tridimensionnel. On les a adapté pour tenir compte de la vorticité dans ’écoulement général. ou cela est important, et pour
y incorporer une loi de frottement pariétal delus générale.

Le transport de chaleur dans la couche laminaire est calculé par la méthode de Squire [4], et pour la couche limite turbulente
en utilisant extension de Von Karman de I'analogie de Reynoids. La difficulté de prévoir les conditions aprés un décollement
laminaire a rendu nécessaire d’établir les données initiales, dans le cas d’une couche turbulente qui se recolle, sur une loi
empirique obtenue a partir des résultats expérimentaux de transport de chaleur et que I'on suggére d’appliquer plus largement.

La comparaison avec ’expérience est bonne lorsque la couche limite est laminaire, mais le transport de chaleur est surestimé

dans les régions turbulentes, particuliérement en présence d'un gradient de pression favorable.

Zusammenfassong—Eine frithere Arbeit [1] befasste sich mit Messungen der ortlichen Warmeiibergangskoeffizienten an
Gasturbinen in Kaskadenanordnung, wobei eine starke Zweitstromung erzeugt wurde. Einzelheiten der Berechnung werden
nun gebracht; die Arbeit wird als zweiteilig angesehen: (a) die Bestimmung der Zweitstromgeschwindigkeiten und (b) die
Natur der Schaufelgrenzschicht und einschldgige Stoffwerte fiir den Wirmeiibergang.

Die Berechnungen im ersten Teil fiir die aufgebrachte Verwirbelung in Stromungsrichtung beruhen auf einer Methode
von Hawthorne [2]. Die Berechnungen wurden durchgefithrt mit drei Annahmen unterschiedlicher Feinheit fiir den Haupt-
strom. Die Ergebnisse unterscheiden sich nicht stark voneinander und die Ubereinstimmung mit dem Versuch ist im Allge-
meinen gut.

In den Grenzschichtberechnungen werden die Momentenintegralbeziehungen in der Form nach Mager [3] fiir die drei-
dimensionale Strémung beniitzt. Angleichungen werden vorgenommen, um die Verwirbelung im Hauptstrom zu bertick-
sichtigen, soweit dies notwendig ist, und um ein allgemeineres Gesetz fiir die Oberflichenribung einzufithren.

Der Wirmeiibergang in der Laminarschicht wird nach der Methode von Squire [4] berechnet, fiir die turbulente Grenzschicht
nach der Erweiterung der Reynolds Analogie durch von Kdrman. Die Schwierigkeit, Bedingungen vorherzubestimmen, die
einer laminaren Abldsung folgen machte es notwendig, die Anfangswerte fiir das Wiederanlegen der turbulenten Schicht
auf eine empirische Regel zu bezichen, die, gewonnen aus gemessenen Wirmeliibergangswerten, versuchsweise zu weiterer
Anwendung vorgeschlagen wird.

Der Vergleich mit dem Versuch liefert gute Ubereinstimmung bei laminarer Grenzschicht; in den turbulenten Bereichen

wird aber der Wirmeiibergang tiberschitzt, besonders, wenn ein giinstiger Druckgradient vorliegt.

Anpporanna—JB npemsayielt crathe [1] oNMCHBAINCH M3MEPEHUA KOIOOUILNEHTA JOKATBHOIO TEINIO00MEHA
HA TOBEPXHOCTH JIOMATKHM Tra3oBOoft TypOMHH B Kackage, Ile COBNABAJICA CUIHBI BTOPUYHELT moTok. B
HacToAmell craTbe NPUBONATCA NOApPOGHBIE pacueTh, mpuveM pabora pasbnBaercA Ha IBe dacTu. (a)
KOJIMYeCTBEHHOE ONpelesIeHHe CKOPOCTH BTOPMYHOTO NMOTOKA M (6) MpupoJa MOrPaHHYHOrO CJI0A HA JI0NATKe
M CBA3AHHBIE C HAM TeTIOOGMEHHBIE XapaKTePHCTHKH.

B mepBo#t wacTH pacueThl BHIHYMIEHHON B3aBUXPEHHOCTH [IOTOKA OCHOBAHBL 1a Meroie Xocopua [2].
PacueTsl OCHOBHOTO TNMOTOKA MPHBONATCA C TPeMH I0CJEIOBATENIHBIMM JONMyLIleHusmu. BHavame npearno-
jlaraercs CBOGOQHBIN BMXpEeBOW IIOTOK, Aajee MCIOAb3VETCA HBBeCTHOEe JBYXMEDHOE TONe CKopocTel v
JOMATOK M, HAKOHEN, BCe 3TO KOPPEKTHPYETCA NJA TOro, 4ro0bi yYecTh CMeMmenue OCHOBHOTO TOTORA.
PeayapTaTsl CHJIBHO OTJHMYAIOTCH ApPYr OT Apyra, 1, B o0LIeM, HaXOAATCSA B XOPOUWIEM COOTBOTCTBHU «
JKCNePUMEHTAIBHBIMM {AHHBIMU.

IIpu pacuere TOTPAHMYHOTO CJIOS WUCMONB3YIOTCH HHTETPAJIbHbIE COOTHOMIEHUA KOJIMYECTRY [BUKEHDA
A TpeXMEPHOro noToka no Maitmxepy [3]. Cresanbi HEKOTOpBIe yHpOlEHNA, YTOOLE y4eCcTh 3aBUX PEHHOCTD
OCHOBHOT'O NOTOKA 1 TOJAY4YHTb Oojiee OOLMH 3aKOH IOBEPXHOCTHOTO TPEHUA.

Tennoo6Men B JAMHHAPHOM Cuoe paccuuteiBaercsi 1o merony Cwxsaitepa [4] pna Typ6yaeHTHOro
HOrPaHNYHOIO CJIOA C NoMoue aHagoruu Pelnoapaca mo Hapmany. TpymmocTs pacuera ycuosuil, 1pu
KOTOPHIX BO3HMKAeT OTPHIB JAMWHAPHOIO CJIOA, NMpHUBena K Heo0XoguMocTn OpaTh HAYaJbHLIC JAHHbIE
JAJIA TIPUCOEXUHABIIETOCH CJI0A HA OCHOBAHHM 3MITHPHUYECKOTO NMPAaBHJIA, KOTOPOE COCTABICHO HA OCHOBAHMH
ZAHHBIX, MOJIYYEHHHX NTPM U3MEPEeHUAX TemI006MeHa, U NMPOU3BOJBHO IIPeANoaaraeTcd FOfHLIM jiisa 00aee
UIMPOKOr 0 NCIIOJIb3OBAHMA.

CpaBHeHHEe ¢ OHKCHEPUMEHTAIBHBLIMYN JAHHBIMM TIOKA3aJI0 XOpolllee COBMafe€HHe [JIA JIAMHHAPHOTV
NOTPAHMYHOrO cJI0A, a B TypOyneHTHO!H OO0NacTH 3HA4YeHN" KO3QPUIUEeHTa TenaooOMeHa NOJIYYATCA
3ABBITIEHHBIMY, OCOGEHHO, 1P HAJIUYMHM OTPHIATENLHOTO IPafiieHTa JaBIeHMs.



