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Abstract-A previous paper [l] has described measurements of local heat-transfer coefficients over the 
surface of a gas turbine blade in a cascade where strong secondary flow was generated. Details of calcula- 
tions are now given, the work being considered in two parts: (a) the estimation of secondary flow velocities 
and (b) the nature of the blade boundary layer and related heat-transfer properties. 

In the first part, calculations for the induced streamwise vorticity are based on the method of Hawthorne 
[2]. The calculations are made with three assumptions, of various degrees of refinement, about the main 
flow. In the simplest case a free vortex flow is assumed, in the next a known two-dimensional velocity field 
about the blades is used, and finally. this is corrected to allow for displacement of the main stream. The 
results do not differ greatly from each other, and agreement with experiment is generally good. 

Boundary-layer calculations make use of the momentum integral relations in the form due to Mager [3] 
for three-dimensional flow. Adaptations are made to allow for mainstream vorticity where this is signifi- 
cant, and to incorporate a more general skin friction law. 

Heat transfer in the laminar layer is calculated by Squire’s method [4] and for the turbulent boundary 
layer by using Von Karman’s extension of Reynolds analogy. The difficulty of predicting conditions 
following a laminar separation has made it necessary to base the initial data for a reattaching turbulent 
layer on an empirical rule, which is tentatively suggested for wider application, obtained from measured 
heat-transfer data. 

Comparison with experiment is good where the boundary-layer is laminar, but the heat transfer is over- 
estimated in turbulent regions, particularly in the presence of a favourable pressure gradient. 

NOMENCLATURE 

coefficients in empirical fit to 
Prandtl-Schlichting friction law ; 
blade chord ; 
= a/?/ax = l/a curvature of 
streamline ; 
diameter of cylinder descriptive 
of the leading edge of the blades ; 
= aU/ax streamwise gradient of 
primary velocity; 
body force vector, 
functions defining velocity pro- 
files in the blade boundary layer ; 
local heat-transfer coefficient ; 
thermal conductivity; 

Nu, 

P? p, 

pr, 
R, 

Re, 

S. 

u, v, w, 

u, 
H, J, K, L, boundary layer shape factors P, 

defined by equations (4.9); x, YP z, 
m, = PXz/PzC ratio of total pressure 

at chosen point of blade passage 
499 

to total pressure on centre line ; 
Nusselt number he/k; Nu, = 
hd/k, Nu, = hxJk ; 
local static, total pressure; 
Prandtl number ; 
radius measured from axis of 
rotation of blade ; 
Reynolds number ; 
Re, = UZec/v, Re, = U,,d/v; 
Re, = UriLJv, Re, = U,x,/b ; 
distance measured along stream- 
line ; 
components of secondary velo- 
city in x, y, z directions; 
scalar magnitude of P ; 
velocity vector ; 
co-ordinate directions referred 
to two-dimensional potential 
flow pattern, defmed in Fig. 1; 



500 L. A. WALKER and E. MARKLAND 

co-ordinate directions used in 
development of boundary-layer 
equations ; 
local skin friction parameter de- 
fined by Z2 = pu$?/~,,~. 

Greek symbols 
= tan- ’ zo. r/7O, x angle between 
surface stress and direction of U 
outside boundary layer ; 
angle between stream direction 
and (xy) plane ; 
boundary-layer thickness ; 
thermal boundary-layer thick- 
ness ; 
displacement thickness of boun- 
dary layer defined in equations 

(4.5) ; 
=tana; 
angular deflection of streamline 
in (xy) plane ; 
momentum thicknesses of boun- 
dary-layer defined in equations 

(4.5); 
= 8, Re”,; 
first and second approximations 
toe; 

C+ du 
= v dx velocity gradient 

parameter ; 
dynamic, kinematic- viscosity, 
density of fluid ; 
components of B in x, y, z direc- 
tions ; 
radius of curvature of streamline ; 
shear stress; 
shearstressin(xy)and(zy)planes; 
surface shear stress in direction 
ofx; 
surface shear stress in direction 
ofz; 
angle between normals to stream- 
line and Bernoulli surface ; 
secondary stream function ; 
vorticity vector ; 
scalar magnitude of blade 

angular velocity about a fixed 
axis ; 

%2 q, w,, components of blade angular 
velocity in x, y, z directions. 

Suffies 

1, 
k 

2, 

EC, 

x, 

xz. 

upstream condition ; 
upstream condition at distance z 
from midspan ; 
downstream condition ; 
downstream condition at mid- 
span ; 
condition at distance x measured 
along streamline ; 
condition at point in blade pas- 
sage at distance z from midspan. 

1. THE SECONDARY STREAM 

THE SECONDARY stream is calculated by use of 
Hawthorne’s theory [2] which is indicated 
briefly below. It has been used by Hawthorne 
and Armstrong [5] to predict with.fair accuracy 
the secondary flow at outlet from a cascade of 
impulse turbine blades ; moreover, other theories 
of Squire and Winter [6] and Preston [7] are 
seen to be special cases of the theory. 

The equations refer to inviscid incompressible 
flow. The vorticity present upstream of the 
deflecting cascade may have arisen from fric- 
tional effects, but in the deflecting mainstream 
with which we are concerned, viscous effects 
are not influential in forming the secondary 
flow. 

With B as a stream velocity vector of scalar 
magnitude U, the vorticity a = curl p may be 
split into two components 

and 

(7 AQAP 
8.V 

normal to the streamline. 

The following relations are used : 

div a = 0, since B = curl v 

div P = 0 by continuity. 
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The analysis considers the estimation of the line. Writing C$ as the angle between these 

streamwise component of vorticity. The fore- normals, equation (1.2) becomes 

going relations may be used to show that 

V.grad A = 
0 

div v CivA n) (1.1) P.grad 6) = -2${grad@}zsin). 

Integrating this expression between stations 

of which the right-hand side is expanded using 1 and 2 of a streamline along which the length 

the Euler equation is denoted by S, leads to the result 

(i;’ . grad) v = - grad $ + F 
0 ($ - (i)l = 

where F represents body forces. The resulting 
expression derived in [2] is - 2/${grad($)j y.dS. 

1 

B. grad 1 - - 1 (U) - U‘%([ZVAgrad($i]. 

(7 . grad) P - &P.G) 

_ div P A n 
uz . (1.2) 

The first term on the right-hand side is shown 
to arise as the forward inclination in the stream 
direction of an upstream vortex line in transit 
through the passageway. The second term, which 
becomes effective downstream, represents the 
wake-directed component arising from stretch- 
ing of a portion of the filament that commences 
upstream and wraps round the blade in passage. 

In the present case, Bernoulli surfaces are 
assumed to be plane and parallel to the end wall 
so that C#J = 212. Replacing dS/a in this by the 
streamline deflection de and performing the 
integration from the upstream direction where 

r = 0, 

(r/U) = -2 $ grad (P/p) de. (1.3) 

1 

If U is constant along any given streamline 
(as in free vortex flow) and if grad (P/p) is 
assumed to be constant along the streamline, 
i.e. 

grad (P/p) = grad (PI/p + Uf/2) = U,(dU,/dz) 

The third is the vorticity shed from the blade then equation (1.3) becomes 
due to change of circulation along its length in 
non-uniform flow. 

5 = -2(dU,/dz) 0 (1.4) 

Within the blade space, only the first right- 
hand term of equation (1.2) is retained. Examin- 
ing this term, the argument of Hawthorne [8] 
shows that only the centripetal component U’/a 
(in which a is the radius of curvature of the 
streamline) of acceleration (V . grad) P con- 
tributes to the result of the scalar product. In 
general, the Bernoulli surfaces are curved as 
well as the streamlines, and the normal to the 
Bernoulli surface at any point is not perpen- 
dicular to the principal normal to the stream- 

which is the result of Squire and Winter [6]. 

2. EVALUATION OF THE 
STRFaAMWISEDIREXTED VORTIClTY 

Figure 1 indicates the position of (yz) planes, 
a’, etc., in which the vorticity component 5 and 
the resulting induced velocities u, w are to be 
computed. The planes do not quite coincide 
with the slightly curved equipotential planes of 
two-dimensional motion, but no significant 
error is introduced by this discrepancy. < is 
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computed from the integral of equation (1.3) 
in the form 

where the suffrx xz is introduced to identify a 
chosen point in the blade passage at a specified 
spanwise station z. The terms U,,P,, and 8 of 
the integrand define the “primary field” in 
the sense used in [l]. and, irrespective of the 
degree of sophistication adopted in describing 
this held, it should be noted that perturbations 
introduced by the secondary velocities are 
neglected when evaluating the integral. The 
main features of the primary field are recalled 
at the end of this section. 

Equation (2.1) is conveniently written for the 
purpose of calculation as 

51, = - &($)$jg (+$‘dR (2.2) 

1 

in which P,, is a convenient reference pressure 
(the total pressure downstream at the centre 
span). UIZ is the upstream velocity in the (xy) 
plane under consideration, and m is P,,/P2,. 
The integral may be evaluated along the stream- 
lines of Fig. 1 for a specified distribution of up- 
stream total pressure, on the assumptions that 
&t/az remains constant, and UJJXZ retains 
the value it has in two-dimensional flow, as the 
integration proceeds. Alternatively, the mea- 
sured field within the blade passages may be 
used to derive appropriate values for the total 
pressure gradient and velocity along the length 
of the streamline to perform a more realistic 
calculation, so obtaining a comparison of com- 
putations of two different degrees of refine- 
ment. The details are given in Appendix 1; it 
suffices to note here that in the region where the 
upstream total pressure is uniform a different 
expression is used from that appropriate to the 
region where there are severe gradients of total 
pressure. 

The calculation of vorticity according to 
equation (1.4) due to Squire and Winter [6] 
follows immediately from 

5 = -2(dU,/dz) e 

= - 2ed[2(&, - Mlplldz (2.3) 

in which 0 is angular deflection as read from the 
two-dimensional flow pattern of Fig. 1 and P,, 

FIG. 1. Two-dimensional potential flow solution and planes 
used for measurement and for calculation of secondary 

velocities. 

is assumed coustant along a streamline, being 
specified in terms of z upstream of the cascade. 

Note WI the primary velocity field 

Certain main features of the primary velocity 
held referred to above have been described in 
reference [l], where it was seen that results of 
the potential solution disagreed slightly with 
measured pressure data at the blade surfaces 
even over the portion of the blade span where 
total pressure is uniform, and that there was a 
small decrease in static pressure drop across the 
cascade as compared with the two-dimensional 
value, due to the reduction in stream exit angle 
caused by secondary velocities. This particular 
influence outweighed a reverse effect due to a 
net contraction of the width of the stream over 
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which the total pressure is uniform, which tends 
to promote an increased pressure drop across 
the cascade. In passing through the blading, 
the mainstream is deflected laterally with the 
changing velocity profile. An accurate predic- 
tion of this, as a basis for evaluating the terms of 
the integrand of the equation for streamwise 
component of vorticity would be complex but 
might be made in terms of the actuator disc 
theory as developed by Hawthorne and Arm- 
strong [9], where the equations of continuity 
and motion are linearized on replacing the 
cascade by a disc at which deflection occurs. 
Application of the equations is limited to fields 
of moderate upstream non-uniformity, so it is 
not surprising that when a prediction was made 
in this way for the total pressure profile at the 
plane of trailing edges, the result did not tally 
with experiment in respect of the dimensions of 
the uniform region. 

Rather than attempting to extend the method 
of Hawthorne and Armstrong [9], recourse was 
made to experimental data to obtain a more 
refined primary field. Whilst such information 
may not in general be available for cascades of 
blades, it is useful to determine to what extent 
the computed secondary velocities are affected 
by the assumptions made concerning the pri- 
mary field. In fact it will be seen that secondary 
velocities based on the relatively simple poten- 
tial field, which makes no appeal to experi- 
mental measurements within the blade passage, 
and corrected simply in terms of an upstream 
velocity profile, compare favourably with those 
based on the lengthier method. Even assuming 
a free vortex field, which leads to Squire and 
Winter’s result of equation (2.3), gives results 
of fair accuracy. 

3. SOLUTION FOR THE INDUCED 
VELOCITIES U AND W 

The vorticity component 5 has the direction 
of the unperturbed streamline, so that induced 
velocities lie in the equipotential surfaces which 
are normal to the streamlines. These surfaces 
are very nearly plane so the plane surfaces 

indicated by a’, etc., in Fig. 1 may be regarded 
as equipotentials for present purposes, and the 
components Y and w may be evaluated as if 
directions Y and z lay in these plane surfaces. 

The local vorticity and continuity relations are 

(3.1) 

cos p + u) + ‘y + g = 0 
8Y 

(3.2) 

where u, u, and w are perturbation components, 
U is the mainstream primary velocity and /? is 
the angle between the mainstream direction and 
the (xy) plane. The perturbation value u is taken 
as being small compared with v and w since it 
arises only from reorientation of the incident 
vorticity ql, out of the (xy) plane, giving a 
component [, under the action of the secondary 
components u and w, and is therefore of a 
smaller order of magnitude. 

The distribution of /? over the blade is as yet 
unknown, so the assumption is made that cos 
j3 = 1. Values of w resulting from a calculation 
using this assumption could, if required, be used 
to obtain a better approximation to cos /?. 
The results of Figs. 6 and 7, for the particular 
calculation reported here. show that the assump- 
tion is reasonably valid up to x/c Y 0.9 on the 
convex surface and up to x/c N 0.6 on the con- 
cave. Writing the known variation of aU/ax 
in the (Yz) plane as fI(Y, z), and taking cos 
/? = 1, equation (3.2) becomes 

f,(~,~) + afjay + aw/az = 0. (3.3) 

Appropriate differentiation of equations (3.1) 
and (3.3) gives 

2 2 
aV+aU=_2_3 af 
ay2 az2 ay aZ (3.4) 

2 2 afl 2 d”+i(i=__+-. 

ay a22 ay 
(3.5) 

The right-hand terms of equations (3.4) and 
(3.5) are not easily described by analytical 
functions nor are the values of u and w initially 
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known round the entire boundary of the cross- 
section of the flow passage. 

An initial approximation, however, may be 
made taking the assumptionf, = 0. This allows 
the definition of a secondary stream function 
according to 

which satisfies the reduced equation 

av+aw=O 
ay aZ . 

Rewriting the relation (3.1) gives 

(3.2a) 

(3.7) 

where Ic/ = 0 round the entire boundary of the 
flow passage, and along the plane of symmetry 
z = 0. 

A relaxation solution for t+Q is found for each of 
the planes a’ to e’ of Fig. 1, the distribution of l 
over each of the planes being determined by 
one of the methods described in Section 2. A 
similar procedure may now be followed for 
evaluation of au/ax where U originates in the 
potential solution, and is taken to vary in the 
direction of z in direct proportion to the up- 
stream velocity. Boundary values are then given 
to equations (3.4), (3.5) which, by the relaxation 
method, yield an improved solution for v and w. 

It will be seen that with the assumption aU/ 
ax = 0 (which is true only for flow approaching 
and receding from the cascade). equations 
(3.4) and (3.5) become 

a% a% ag 
7+&Z= -z 
ay 

(3.4a) 

azw a2w ay 
--T+d,z=+dy. 
8.Y 

(3Sa) 

Results computed for u and w on these rela- 
tions must be identical with those derived from 
the stream function via equations (3.6) and 
(3.7), apart perhaps from some loss of accuracy 

in the use of the differentiated right hand quan- 
tities in the above pair of equations. The order 
of differences to be expected between the solu- 
tion based on equations (3.4) and (3.5) and the 
first approximation based on equation (3.7) 
will be indicated by the respective magnitudes 
of - 8 f,/ay compared with - &Qaz in equation 
(3.4) and -af,/az compared with +a(/@ in 
equation (3.5). 

Figures 2 and 3 show the results of calcu- 
lations in which the streamwise component of 
vorticity 5 has been calculated by the three 
different methods referred to above, and the 
resulting induced velocities by equation (3.7). 
Correspondence with experiment is generally 
quite good, but it cannot be argued that in- 
creasingly good agreement results from in- 
creasingly complicated calculation. 

Plane e was selected to illustrate the secon- 
dary velocity distributions, partly to amplify 
the data given in reference [l] where similar 
results were given for plane c, and partly 
because secondary velocities generally have 
their largest values at plane e. 

The effect of including the fi term is illus- 
trated on Figs. 4 and 5, where a comparison is 
made, using the same distribution of < in both 
cases, between the secondary velocities com- 
puted by equation (3.7) and by solution of 
equations (3.4) and (3.5). The w component is 
altered very little by inclusion of fi, but u is 
affected to a noticeable amount and generally 
agrees rather better with measurements than the 
previous solution. It should be noted that 
calculations done in plane e’ have been corrected 
to plane e, by increasing u and w in proportion 
to the increase of the deflection angle in two- 
dimensional flow from plane e’ to plane e. 

4. THE THREEDIMENSIONAL BOUNDARY 
LAYER AND HEAT-TRANSFER PREDICTIONS 

The mechanism which produces secondary 
flow in the turning mainstream is also present 
in the blade boundary layer, where severe total 
pressure gradients are present, and where more 
pronounced spanwise deflections are to be 
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Mmrured Hawthorn with corrected Howlhome with potential Squire and Winter 

field field 

FIG. 2. Component of secondary flow in y-direction at plane e-streamwise velocity 
gradient neglected. Y measured in direction of cascade from mid point of LL’ of 

Fig. 1, z measured in direction of span from mid point of blade. 



506 L. A. WALKER and E. MARKLAND 

4 4 II 

Y=0,32in 

0 

5 2.5 0 

-8 : Y 

6 

-12 

-I6 

-20 El3 
5 a.5 0 

z. in 

-4 I-c Y=0,77in 

-8 

5 2.5 0 

4 

0 

-4 

-8 

-12 

-16 

-20 

-24 
5 s5 0 

1. I” 

5 25 0 

0 

-4 
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I, I” 

Measured t+,rlhorra wth conected Hawthorne wtthpotant,ol Sqwre and Winter 

field field 

FIG. 3. Component of secondary flow in z-direction at plane e-streamwise velocity gradient 
neglected. Y measured in direction of cascade from mid point of LL’ of Fig. 1, z measured 

in direction of span from mid point of blade. 



CALCULATION OF HEAT TRANSFER TO TURBINE 507 

Z, in 

___.+ ___ 
Howfh~me with comecfcd 
ftsld 

r, in 

Wtfh stnamwiss wirxaty gradcnf 
included 

FOG. 4. Effect of inc~udi~ streamwise velocity gradient on component of secondary flow 
in y-direction. Y measured in direction of cascade from mid point of LL’ of Fig. t, z 

measured in direction of span from mid point of blade. 
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A 

Measured 

4 

Y=2.27in 
0 

ttowthane with carried 
field 

0 

-4 

-8 

-16 

-20 

-24 

-28 
5 25 0 

z, in 

. 

With rtramnise velocity gmdfent 
ncluded 

FIG. 5. Effect of including streamwise velocity on component of secondary flow in 
z-direction. Y measured in direction of cascade from mid point of U of Fig. 1, 

z measured in direction of span from mid point of blade. 
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expected near to the surface. It is therefore con- 
venient to divide the velocity in the boundary 
layer into two components at right angles, the 
axes being chosen either with reference to the 
(xy) plane of Fig. 1 or with reference to the 
velocity vector just outside the boundary layer. 

The problem has been treated by Wild [lo], 
Timman [11], Mager [3] and others. Timman 
provides the most general method, allowing the 
main and cross flow components to vary ar- 
bitrarily in relation to a curved surface. How- 
ever, with the one restriction that the cross flow 
varies with respect to.the streamwise coordinate 
only, the method due to Mager [3] appears to be 
applicable to this problem and was adopted with 
some modification. 

Mager shows that the boundary-layer equa- 
tions referred to the orthogonal curvilinear 
co-ordinate system (x, y, z), rotating with uni- 
form angular velocity o, and in which x is the 
stream direction just outside the boundary 
layer and y is normal to the surface, may be 
written as 

au au au 1 ap u-++-+w-+cuw=--- 
ax ay az P ax 

aw aw aw 1 aP u-++-++----&=--- 
ax ay aZ P az 

+ f 2 + w’R ; + 20,~. (4.2) 

In these equations, (u, u, w) are velocity com- 
ponents within the boundary layer and C is the 
curvature of the x-axis. For a laminar boundary 
layer, &Jay may be replaced by p((a2u/ay2) 
and &Jay by ~(a2w/ay2). Adapting Mager’s 
treatment to the present case where there is a 
component q of vorticity in the y direction just 
outside the boundary layer and where w is 
zero, the momentum equations may be shown 
to be 

= * (4.3) 
PU2 

2 + & (8; - e,,) + g (e, - 8, - 6:) 

where U is the value of u at the edge of the 
boundary layer, z,,~ and z,,~ are surface shear 
stress components in the x- and z-directions, 
and displacement and momentum thicknesses 
are defined as follows : 

8, = l/U2 j(U - u)u dy 

8,, = i/U2 j(U - U)W dy 

8, = l/U2 Sw2dy 

S: = l/U j(U - u) dy 

S; = l/U SW dy. 

To obtain a solution of the momentum e,qua .- 
tions it is necessary to assume expressions for 
u and w; Mager followed Prandtl’s suggestion 

P21 
W = G(Y/& 7 

wlu = EG(Y/& g(y/& 1 (4.6) 

in which G and g are functions undefined at 
present, satisfying the following boundary con- 
ditions. 

when y=O: G = 0, g=l 

y = 6: G = 1, g = 0 (4.7) 

and in which E is 

E = tan a = t&~~. X (4.8) 

a being the angle between the surface stress and 
the direction of U. 

It is convenient to introduce constants 

2K 
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defined by Mager in terms of the functions thickness 8, equation (4.17) below, due to Squire, 
G and g as follows was adopted. 

H = j(l - G) dy/j(l - G)G dy 1 
The turbulent layer solution requires assump- 

tions regarding surface shear stress as well as 
velocity profiles. Following Mager, we adopt 

G = (y/4+, g = (1 - y/S)2 (4.14) 

which leads to 

J = f(l - G)Gg dy/{( 1 - G)G dy 

K = jGg dy/j(l - GIG dy 
(4.9) 

L = jG2g2 dy/j(l - G)G dy 
J 

so that the various boundary-layer thicknesses 
may be written in terms of 8, as 

S: = He,, e,, = ~Jtl,, 6; = EKB,, 

ez = E2Ltl,. (4.10) 

For calculation of the laminar boundary 
layer of the turbine blade profile, the function 
G(y/6) is assumed to be of the Pohlhausen 
quartic form 

G(y/& = (2 + A/Wy/6) - (42,(ylS,2 

+ (-2 + A/2)(y/Sj3 + (1 - ~I/6)(y/&~ (4.11) 

in which 

(4.12) 

The function g(y/6) is taken as 

g&/6) = (1 - y/sj2 (4.13) 

which is the form successfully used by Mager for 
turbulent layers when computing results for 
comparison with experimental data of Grusch- 
witz [13]. Its use for laminar layers has been 
proposed by Prandtl [12] for a yawed cylinder. 
The Pohlhausen profile is known to give good 
accuracy for laminar boundary layers which 
are not close to separation, and reasonable 
confidence is put in equation (4.11) provided 
that the velocity gradient parameter LI can be 
suitable chosen. After some analysis of the 
results of Squire [4], a value of n = 3.0 was 
assumed for the laminar boundary layer on both 
of the blade surfaces. The corresponding con- 
stants required for subsequent calculations are 

H = 2.430, J = 0.492, K = 1.365 and L = 0.2445. 

However. for evaluation of the momentum 

H = 1.2857, J = 0.5423, K = 2.6727, 

L = 1.0285. 

However, the friction law which he used is 
replaced by a somewhat more general form 

z,JpUf = a(Re,)-“. (4.15) 

Values of a and n are chosen so that the resulting 
value of rO, p computed at a value of Re, corres- 
ponding to the start of the turbulent layer and 
at ten times this value, agree with the Prandtl- 
Schlichting values at the same pair of values of 
Re,. The integration of equations (4.3) and (4.4) 
is then possible as indicated in Appendix 2. 
For the purpose of subsequent heat-transfer 
calculations, the required momentum thickness 
is 8,. and this is conveniently rewritten at this 
stage as 

e = 8, Re;. (4.16) 

Appendix 2 gives details of the method by which 
the momentum integral equations may be sol- 
ved. Successive approximations for 0, designated 
by 8, and 8,,, are obtained for the momentum 
thickness under two- and three-dimensional 
conditions respectively. 

Heat-transfer calculation 
As a preliminary to calculating heat-transfer 

coefficients the momentum thickness is deter- 
mined over the surface under conditions of cross- 
flow by the methods referred to above. 

For the laminar layer, the appropriate values 
of a and n are 0.235 and 1.0 respectively, corres- 
ponding to the adoption of Pohlhausen’s velo- 
city protile. However, the form used by Squire 
[4] is known to be reliable for laminar boundary- 
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layer calculation, so the value of 8, is taken to be 
given by 

the influence of nose vortices mentioned in the 
discussion of experiments in the first paper, 
although this may significantly increase the 
local heat-transfer rate. 

x 

0441 v 
9; = --p- 

s 
us dx. (4.17) 

X 
0 

The numerical values of the shape factors H, 

For the turbulent boundary layer Von Kar- 
man’s extension of the Reynolds Analogy is 
quoted (Eckert [14]): 

2 = & 1 1 
1 + (l/Z)[S(Pr - 1) +5 log, (5Pr + 1)/6]5 

L (4.22) 

J, K and L are taken to be constant throughout, in which 
since they do not vary greatly. 

The well-known result of Squire’s calculation 
z2 = pu~/r,,.. (4.23) 

is This is related conveniently to the ordinates 
h = 0.5715 k/6, (4.18) NujRef by : 

Nu Ret UJU2, -= 
Rej (Z2/Pr){l + (l/Z)[S(Pr - 1) + 5 log, (5Pr + 1)/6]1 

(4.24) 

where 8r is the thermal boundary-layer thickness 
which may be obtained iteratively from the 
physical thickness using tabulated functions 
and the known variation of U in the stream. 
For the purpose of comparison with experiment, 
it is convenient to express this in the form 

Nu 0.5715 

&# = (6,/c) Ret 
(4.19) 

in which Nu is the Nusselt number based on 
blade chord c and Re, is Reynolds number refer- 
red to downstream conditions at midspan of the 
blades. For the stagnation point, the empirical 
relation given by Squire, which closely fits his 
exact solution, is used : 

N&i - = 1.14 pro.4 
Reb 

in which d is the cylinder diameter descriptive 
of the leading edge. Expressed in the same form 
as equation (4.19) 

Nu 
- = l~14(cU,,/dU2,)~ Pr0.4 

Ret 
(4.21) 

No attempt has been made so far to allow for 

Initial thickness of the turbulent boundary layer 
The calculation of the turbulent boundary 

layer requires knowledge of the initial turbulent 
momentum thickness after a laminar separa- 
tion. An empirical rule is used, involving one 
constant, which is supported by experimental 
evidence. 

Assuming that the volume of fluid at separa- 
tion remains constant throughout separation 
in view of the negligible influence of skin fric- 
tion, then 

U6 1 (u/U) d(y/6) = constant (4.25) 
0 

If we knew velocity profiles in the form 

UlU = f (Y/4 

for the laminar layer just before separation and 
for the turbulent layer just after reattachment, 
the ratio of the two values of 6 could be computed 
from equation (4.25). In the absence of the re- 
quisite data, a rough calculation is made using 
approximate velocity profiles for the simple 
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case of a flat plate in zero pressure gradient, to these planes. Figures 6 and 7, which show 
namely experimentally determined streamline trajec- 

u/u = $(y/6) - +(y/S)3 tories close to the boundary layers of the blade 

for the laminar layer and 
surfaces, show how interpolation may suitably 
be effected. 

UlU = (y/W If experimental data were not available, an 

for the turbulent layer. This gives the initial 
estimate could be made from computed values 

value of the Reynolds number for the turbulent 
of w, provided that the transition line could be 
determined or assumed with confidence. 

layer, based on momentum thickness as Comparisons are shown in Figs. 8-11, for 

(U&/v), = 0.523 (0,/c), (UJU,) the condition of zero blade incidence and 

x (UT/U,,) Re, (4.26) 
Re, = 3.38 x 10’. 

where L refers to conditions at the end of the Laminarflow regions 
laminar layer and T to the initial condition of Convex surface. There is generally good 
the turbulent layer, U is the local velocity, and agreement between calculations and experi- 
U,, downstream velocity at midspan. A check mental results at the stagnation point and over 
of the constant in equation (4.26) is given by the fore part of the blade up to x/c x 0.75, the 
basing the left-hand term on values devised from results based on the first approximation & 
known measurements of Nu/Rej. This involves lying generally somewhat closer to the measured 
working in reverse order the steps relating values than those based on 8,,. Over the majority 
9, to Nu/Re$ of the preceding section. Using of the span, the second approximation leads to 
data for the laminar separation point at x/c x higher values of calculated heat transfer than 
0.7 on the convex surface, the mean value of the does the first, but this situation is reversed 
constant for six streamlines taken over the at the station z = 45 in near to the end of the 
complete span was found to be 0.466. This value blade. 
was used in lieu of 0523 in equation (4.26). Concave surface. In the two-dimensional 

The position of laminar separation is deter- mainstream zone near the midspan, conditions 
mined by experiment (see [ 11) and the positions are predicted well up to x/c z 0.4, where a 
consequently assumed for calculations are indi- surface roughness destabilizes the boundary 
cated in Figs. 6 and 7. layer, as discussed in reference [l]. The calcu- 

Further research would be necessary before lated laminar curve falls smoothly to a value of 
any confident theoretical prediction of the 0.32 at the trailing edge. In the region where the 
transition points could be made where the upstream total pressure varies, transition occurs 
influence of cross-flows is involved. Close to the very much earlier, namely at x/c z 0.1. but 
end wall. there is strong interaction between over the short length where comparison is 
boundary layer on the convex surface and the possible laminar heat transfer again agrees well 
layer of the end wall of the cascade, leading to with measurement. 
early transition. 

Turbulentflow regions 
Comparison of measured and computed heat- Convex surface. The momentum thickness is 

transfer results chosen to be consistent with measured heat- 
To facilitate comparison with experimental transfer data at reattachment in the pressure 

data, which were obtained in planes of (x, y), it rise downstream of the throat (x/c z 0.9) 
is necessary to interpolate the results of calcula- according to the empirical rule of equation 
tions (made in natural streamline co-ordinates) (4.26), using a constant of 0.466. The second 
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FIG. 6. Streamline configuration close to the boundary layer 
on convex surface. 
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FIG. 7. Streamline configuration close to the boundary layer 

on concave surface. 

approximation eII for momentum thickness 
now leads to closer agreement with experiment. 
At span station z = 4.5 in, where there is inter- 
ference between the wall and blade boundary 
layers, transition is assumed at x/c = 0.35, 
turbulent separation is taken at x/c = 0.8, 
and this is followed at x/c = 0.85 by turbulent 
reattachment. 
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FIG. 8. Computed and measured heat-transfer coefftcients 
at midspan. 
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FIG. 9. Computed and measured heat-transfer coefficients 
at z = 2.5 in. 
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FIG. 10. Computed and measured heat-transfer coeff’cients 
at z = 3.5 in. 
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FIG. 11. Computed and measured heat-transfer coefficients 
at i = 4.5 in. 

Concave surface. The rising curve downstream 
of the point x/c = 0.4 in the region of uniform 
mainstream is not anticipated by the calcula- 
tions. However, two calculated curves are shown. 
The lower one is computed using an initial 
boundary-layer thickness at x/c = 0.4 chosen 
to tit the measured heat transfer at that point. 
The upper curve is for a turbulent layer which is 
assumed to originate at the stagnation point. 
The experimental results are seen to lie on a 
line which passes from the lower to the upper 
calculated curve between x/c = 0.4 and the 
trailing edge of the blade. In view of the reason- 
able success with calculations elsewhere on the 
blade, it seems that this layer is intermittently 
turbulent or in a state of progressive break- 
down, as described previously [l]. 

In the region of varying total pressure, the 
experimental values show slowly rising curves 
exhibiting a more erratic behaviour than else- 
where on the surface, and which lie almost 
entirely below the calculated values. The skin 
friction according to the second approxima- 
tion is generally a little greater than the first. 

It will be seen that over most of the blade 
there is quite good agreement between com- 
puted and measured values. The influence of 
cross-flow on local heat transfer over the 
laminar flow part of the convex surface is not 
large, and the calculations follow this particular 
experimental trend extremely well. It is con- 

used with reasonable confidence if information 
on the position of the transition lines is avail- 
able. Although. in the investigation of the 
relative accuracy of methods of various degrees 
of refinement, appeal has been made to experi- 
mental data in the preceding sections. it should 
be emphasised that in no case has the result of 
computation been significantly improved by 
incorporation of such data. 
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APPENDIX 1 

Note on Estimation of Primary Field 

The simplest model of the primary field is 
obtained by taking the two-dimensional po- 

eluded that the methods described may be tential solution of Fig. 1 and scaling all velocities 
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in a given (xy) plane in proportion to the known 
velocity at inlet. The local velocity U,, at any 
chosen point in the blade passage at a specified 
spanwise station z is thus given in terms of the 
upstream velocity U,, by 

UxzlUlr = QPlp (Al.l) 

where the suffix p indicates the two-dimensional 
potential solution. Use of this simple relation 
leads to an overestimation of the pressure drop 
through the cascade, although the secondary 
stream deduced from it is in fair agreement with 
experiment. 

A more realistic model is one which takes 
account of lateral deflection, which may be 
estimated from measurements within the blade 
passages as indicated below. It is convenient to 
deal with the region over which the inlet 
velocity profile is nearly uniform (i.e. 2 < 2 in) 
separately from that where the total pressure is 
varying rapidly (i.e. 5 in > z > 2 in). 

Over the region of near-uniformity, an adap- 
tation is made of the method evolved by Stuart 
[15] for dealing with an apparent flow con- 
traction in a compressor cascade. The reduction 
of pressure ratio across the cascade, as com- 
pared with the two-dimensional case, leads to a 
spanwise diffusion of the stream. Suppose that 
the upstream velocity U1, in the flow under 
consideration is related to the upstream velo- 
city U,, in a corresponding two-dimensional 
flow by 

wu1, = 1 (A1.2) 

in which 1 > 1; the velocities Uzz and U,, 
downstream of the blades are equal in the two 
motions. We now assume that there is a relation- 
ship at the form 

U 
--E= 

1 

U xp 1 - (I - 2) ;c” 
(A1.3) 

between the velocity U,, at any point of the 
flow and the velocity U,, at the same point of 
the two-dimensional flow. The parameter x 
varies from zero to unity through the blade 
passage, and s is a constant. The procedure used 

to determine x may be seen by reference to 
Fig. 1 where the line LL’ denotes the plane of the 
leading edges, and SS’ a plane at which two- 
dimensional flow is substantially uniform down- 
stream of the blades. For each streamline of the 
two-dimensional flow, x is the distance from the 
intersection of the streamline with LLl, projected 
in the direction of the chord, and expressed as a 
fraction of the projected length of the segment 
of the streamline contained between LL: and SS’. 

The change in velocity ratio due to diffusion 
may then conveniently be expressed in the form 

U 
XI= U&l, 
UIZ 1 - (1 - 1) xs 

(A1.4) 

from which L may be found by putting x = 1 
and comparing the overall velocity ratio as 
measured in the two-dimensional flow condi- 
tion with that measured in the presence of 
secondary flow. The exponent s is chosen to suit 
measured values of surface pressures along the 
blade chord. Writing 

c, = 1 - (u,,/u*,)2 (A1.5) 

as the pressure coefficient and 

c; = I - (UXP&J2 (A1.6) 

as the pressure coefficient for two-dimensional 
flow, and substituting in equation (A1.4) leads 
to the result 

= (1 - (1 - J)x”}/,? (A1.7) 

which may be rewritten to give s explicitly as 

s = log { 1 - A[(1 - CJ/(l - C,)]f/ 

(1 - L)}/log x (A1.8) 

Experimental values of C, show that s is very 
nearly constant over the blade chord, indicating 
that the form of equation (A1.2) gives a good 
representation of the effect being considered. 
In the particular condition of the present test. 
L has the value 1.24 and s is 2.7. 

Over the part of the span where the total 
pressure is changing rapidly (5 in > z > 2 in) 
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the above treatment requires modification to values of the constants p, q and r for the parti- 
allow for changing total pressure. Using equa- cular non-uniform flow under consideration 
tion (A1.7) as a basis, various forms of relation- are (at z = 35 in.) lG0, 0.40 and 0.37 on the 
ship were considered to obtain an empirical concave surface and 1.60, 0.20 and 1.34 on the 
matching of measured pressures calculated convex surface. 
under two-dimensional conditions. The form The relationship which corresponds with 
adopted is equation (A1.4) may readily be shown to be 

(1 - C,)/(l - c;, 

= 1 + O?X + q)(l - x)’ (Al.91 
$=${c;;;:;;) 

( )I 

f l-C, 

x l-CP 
(A1.10) 

in which p. q and r are constant along a blade 
surface at a given value of z. For flow within the where, on the blade surface, mPze is the local 
blade passage, linear interpolation between the total pressure involved in the calculation of 
values of the constant on the concave and convex C, and in the blade passage, mPzc is again the 
blade surfaces is adopted, values being chosen local total pressure at the point where U,; is 
appropriate to the particular value of z. Typical required. 

Outline of Boundary-layer Calculation 

APPENDIX 2 

Following the analysis of Mager [3] and making slight adjustments to allow for the facts that the 
blades are not rotating and that the main stream is not irrotational, having a component q of vorticity 
just outside the boundary layer in the y direction, the momentum integral equations are 

2 + ; g (2e, + s,*, + % + 2 e,, ro. X 
=puz (4.3) 

8, a 
az + x (6: - e,,) + $j g (e, - 8, - 6:) + j+ 2 (6: - e,,) + $ (e, + 8,) = - 35 

pU2’ 
(4.4) 

Substitution of H, J, K, L from equations (4.9) and zo, JpU2 from equation (4.15) and for zo, Jz~, x 
from equation (4.8) gives, after reduction, 

1 ae __ 
n+lax 

+ &.kg+Jez+e Ag (2+13)-L 1 [ 1 n+l 

n+2Je 
+ n J& + n+lVq 

n+l 
- a = 0 (A2.1) 

(K - JI ae 

n+l %i+ 

+ &a = 0 (A2.2) 

in which 

e=e,RG (4.16) 

and the constants a and n are available from the initial condition. Making the same assumptions as 
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Mager, that E is small compared with unity, and 8 is small compared with length measured along the 
flow path, then terms in s2, E8 and e2 may be neglected and equations (A2.1) and (A2.2) simplify to 

g + [(n + l)(H + 2) - n] ; g 8 = (n + l)u 

n+21av 
+ ---Ce&,l~=& [(I +H)C-g;]. (A2.4) 

n+1uax 

The solutions, extended to a desired value x from an initial value xi, of these equations, are obtained 
as follows 

e, = t+(Ui/U)(n+1)(H+2)-n + ut!:l~H~$_ s U(n+l)(H+2)-n dx (A2.5) 

where 0, is the first approximation. Using this to obtain a first approximation eI of equation (A2.4) 

EI = (gipI)lh+l) (ui/up+2)/(n+ 1) _.f!_ 
j ae;/(n+l) u(n+W(n+l) El(x) dx 

El(x) + (ji _ K) e;/(n+ 1) p+m+ 1) El(x) 
(A2.6) 

in which 

and 

(A2.7) 

a = (H + 1) C - Hq/U. (A2.8) 

The terms involving E in equation (A2.1) may now be taken into account. The reduced form, 
equation (A2.3) becomes : 

g [(n + l)(H + 2) - n] + nsJC + (n + 2) $ q = (n + 1)~ (A2.9) 

admitting a small loss of accuracy in the neglect of the term JO de/dz. Mager suggests the use of 
Lagrange’s method to obtain the improved value, say en, from this equation. However, if 80,/8z 
and %,,/az are taken to be equal, the solution is : 

e,, = (Ui/U)(n+1)(fi+2)-n 8i 
j U(n+1)(H+2)-n E,(x){(n + 1)~ - JE &&k?z} dx 

E,(x) + 

xi 
U(n+ l)(ff+2)-fI E2(x) (A2.10) 

in which a and n are known, and E,(x) is 

E,(x) = exp { j Je[nC + (n + 2)1/U] dx}. 
xi 

(A2.11) 

Clearly the accuracy of the calculation, which starts from a two-dimensional approximation and 
proceeds to correct this for cross-flow effects, depends on the accuracy with which the two-dimen- 
sional value of momentum thickness is first predicted. 
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R&sum&-Dans un article precedent [l], I’on a d&it des mesures de coeffkients locaux de transport de chaleur sur la surface 
dune ailette de turbinea gazdans unegrilled’aubes oh seproduit un Ccoulement secondaire important. Ondonne maintenant 
les details des calculs, en les considbant en deux parties, (a) l’estimation des vitesses d’ecoulement secondaire et Cb) la nature 
de la couche limite sur I’ailette et les proprittesbu transport de chaleur qui y sont likes. 

, 

Dans la premiere partie, les calculs pour la vorticite longitudinale induite sont bases sur la methode de Hawthorne [2]. 
Les calculs sont effect&s grace a trois hypotheses sur I’ecoulement principal, avec plusieurs degrts de complexiti. Dans le 
cas le plus simple, on suppose que I’on a un Ccoulement de tourbillon libre, dans le cas suivant, on utilise un champ connu 
de vitesses bidimensionnelles autour des ailettes, et entin, on le corrige pour tenir compte du deplacement de I’tcoulement 

principal. 
Les r&hats ne different pas beaucoup I’un de I’autre, et l’accord avec I’experience est generalement bon. Les calculs de 

couche limite emploient les relations inttgrales de quantitt de mouvement sous la forme due a Mager [3] pour I’tcoulement 
tridimensionnel. On les a adaptt pour tenir compte de la vorticitt dans I’tcoulement general. oh cela est important, et pour 
y incorporer une loi de frottement par&al delus g&kale. 

Le transport de chaleur dans la couche laminaire est calcult par la methode de Squire [4], et pour la couche limite turbulente 
en utilisant I’extension de Von Karman de I’analogie de Reynolds. La difftculte de prevoir les conditions apr&s un dtcollement 
laminaire a rendu ntcessaire d’etablir les don&es initiales, dans le cas dune couche turbulente qui se recolle, sur une loi 
empirique obtenue a partir des resultats experimentaux de transport de chaleur et que I’on suggbre d’appliquer plus largement. 

La comparaison avec I’expbience est bonne lorsque la couche limite est laminaire, mais le transport dechaleur est surestime 
dans les regions turbulentes. particulierement en presence d’un gradient de pression favorable. 

Zusammenfassung-Eine friihere Arbeit [l] befasste sich mit Messungen der ortlichen Wlrmetibergangskoeffizienten an 
Gasturbinen in Kaskadenanordnung, wobei eine starke Zweitstriimung erzeugt wurde. Einzelheiten der Berechnung werden 
nun gebracht; die Arbeit wird als zweiteilig angesehen: (a) die Bestimmung der Zweitstromgeschwindigkeiten und (b) die 
Natur der Schaufelgrenzschicht und einschllgige Stoffwerte fur den Warmetibergang. 

Die Berechnungen im ersten Teil fiir die aufgebrachte Verwirbelung in Strijmungsrichtung beruhen auf einer Methode 
von Hawthorne [2]. Die Berechnungen wurden durchgefiihrt mit drei Annahmen unterschiedlicher Feinheit fur den Haupt- 
Strom. Die Ergebnisse unterscheiden sich nicht stark voneinander und die Ubereinstimmung mit dem Versuch ist im Allge- 
meinen gut. 

In den Grenzschichtberechnungen werden die Momentenintegralbeziehungen in der Form nach Mager [3] fur die drei- 
dimensionale Striimung beniitzt. Angleichungen werden vorgenommen, urn die Verwirbelung im Hauptstrom zu bertick- 
sichtigen, soweit dies notwendig ist. und urn ein allgemeineres Gesetz fiir die Oberfllchenribung einzufiihren. 

Der Wlrmetibergang in der Laminarschicht wird nach der Methode von Squire [4] berechnet, fur die turbulente Grenzschicht 
nach der Erweiterung der Reynolds Analogie durch von K&man. Die Schwierigkeit, Bedingungen vorherzubestimmen, die 
einer laminaren Abliisung folgen machte es notwendig, die Anfangswerte fur das Wiederanlegen der turbulenten Schicht 
auf eine empirische Regel zu beziehen, die, gewonnen aus gemessenen Wlrmeiibergangswerten, versuchsweise zu weiterer 
Anwendung vorgeschlagen wird. 

Der Vergleich mit dem Versuch liefert gute obereinstimmung bei laminarer Grenzschicht; in den turbulenten Bereichen 
wird aber der Warmeiibergang iiberschltzt. besonders. wenn ein giinstiger Druckgradient vorliegt. 

kGIOTalI&UI--B npe,QbI,‘Q’m,e# CTaTbe [I] OIIPICbIB3JIIICb Il3MCpeHuH KO3@@IuIICHTa JIOKaZIbHOrO TeII2IOO6M+?lia 
Ha IIOBepXHOCTIl JIOIIaTKH r33OBOti Typ6IIHbI B KaCIGIJBz?, rjJe CO3naBaJICR CIUIHbIti BTOpu’IHbIti IIOTOK. l$ 

HaCTOnmCn CTaTbe IIPRBORRTCR nOApO6HbIe &GuYIeTbI, npvlseu parioTa pasFnnaercR ~a zBe VaCTIi. (a) 
IEOJIIi~eCTBeHHOC OIIponeJIeHIle CKOPOCTII BTOpkI’IHOrO nOTOK Ii (6) IIpIIpOna IIOrpaHIiYHOrO CJIOn Ha JIOnaTKe 
I4 CBFI3aHHbIe C HHM TeIIJI006MeHHbIC XapaKTepIICTIIKII. 

R IICpBOti qaCTM RaCqeTbI BbIHYFKAeHHOg 3aBIIXpCIIHOCTIi nOTOK OCHOBaHbI II3 MCTO;IC SOCopH3 [2]. 
l’aCYCTb1 OCHOBHOrO nOTOK IIRIIBO~RTCR C TpeMR IIOCJIC~OBaTeJIbHbIMII ~On~IIICHIInMK. RH3%L’IC IIRCNIO- 
naraeTCR CB060n~bIti BIIXpeBOt IIOTOIii? nanee ncnonb3peTCn II:IBCCTIIOC ~Bysurpnoe none CIiopcwTeii y 

JIOnaTOK Cl: HaKOHeLI, BCC 3T0 KOppeKTIIpJ’eTCJI Ann TOrO, qTO6bI 4’qCCTb CMCmCIIHe OCHOBHOrO IIOTOli8. 

k?3J’nbTaTbI CAJIbHO OTJIIIYaIOTCR fipvr OT JJpJ’r3, II. B o6uIem, KaXOJFITCn B XOPOUICM COOTR~‘T(‘TBIlIl t 
~&ICnepuMeHTaJIbHbIMIl AaHHbIMII. 

flpI, p3CYCTC IIOrpaH‘IqHOrO CZIOR IICIIOJIb3yIOTCn IIHTCrpa.iIbHbIe COoTHOIIICHIlN HOJIIIYeCTBa ;IBII%CIIIlH 
:IJIFI TpCXMepHOrO IIOTOKa n0 MatiAxrepy [3]. CfiejI3HbI HCKOTOpbIe yIIpOmeHIin, gT06LI J’KeCTb 3aBIIXpCIIliOCTb 

OCHOBHOI’O IIOTOKa Ii IIOJIJ’qIITb 6onee 06mnl 3aKOII rIOBepXMOCTHOrO TpeHMn. 
Tennoo6men B .?aMMHapHOM CJIOC paCCVuTbIBaeTCfI no MeTOny CKBaBepa [4] AJIfl Typ6~lCIrTlIOIY~ 

norpauasnoro cnox c noMombro ananoruu PellnonbAca no HapMany. TpynHOCTb PaNeTa J’CJIoBIln, IIPR 

KOTOpbIX B03HIIKaCT OTpbIB JIaMnHapHOrO CJIOJI, IIpIIBBna K HCO6XOJIIMOCTII 6paTb IIaYaJIbHLIR J.@HHbIC 
~nf~ npBcoe~KwuBmerocfl CZAR Ha 0cKoBaHIIu 3MnKprIsecKoro npaBIwa, KoTopoe CoCTaBJieIIo Ha 0CIfoBaHKII 
XaHHbIX, IIOJIyYeHIIbIX IIpIi II3MepeHuRX TCIIJIOO6Mt?Ha, II npOH3BOJIbHO l~pennO,naraeTCR rOnHbIM ;IJIFI 06nee 
1nIipOKOrO WCnOJIb30BaHuFI. 

CpaBIIeIrKe C 3KCnePRMeHTaJIbNbIM11 JIaIIHbIMII nOKa3aJIO XOpOIIIee coBnageBne fln~ naMnaapaoro 
norpaIIIIwor0 cnofl, a B TJ’p$‘JICHTHOt 06nacTa 3HaYeHRR K03@$IIIuHeHT3 TeIIJIOO6MeHa IIoJIyq3loTCn 
:IaBLIInelIHLIMlr, OCOiieHKO. npu IIa.wwIIi OTpII~aTCJIbHOrO rpanKeKTa naBneHIIn. 


